Fiber optic extrinsic Fabry-Perot interferometric sensor for high blast pressure measurement

نویسندگان

  • G C Poddar
  • Asha Kumar
  • Shilpa Das
  • Deepa Srivastava
  • G S Singh
چکیده

Optical fiber based Extrinsic Fabry-Perot Interferometric (EFPI) sensor significantly emerged as an advanced optical sensor for the health monitoring of civil, mechanical and aeronautical structures. This sensor responds its well capability also towards the measurement of acoustic/shock wave pressure. This paper presents an approach for high blast (acoustic/shock wave) pressure measurement using low cost indigenous rugged type optical fiber EFPI sensor. Optical fiber EFPI sensor works on the two fundamental principles; Fresnel reflection and Fabry-Perot Interferometry by interconnecting single mode optical fiber within the silica capillary which represents Fabry-Perot cavity (or air cavity) as sensing elements. This sensor consists of dielectric materials and is immune to Electromagnetic Interference (EMI), Radio Frequency Interference (RFI) and less sensitive to noise. This paper highlights the fabrication as well as packaging techniques of EFPI sensor which are experimentally more reliable in blast pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.

A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues a...

متن کامل

Interferometric Fiber Optic Sensors

Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some s...

متن کامل

Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor.

A simple intrinsic Fabry-Perot interferometric (IFPI) sensor is developed. The sensor is fabricated by two micro air gaps as reflective mirrors in a fiber to form a Fabry-Perot cavity. Theoretical and experimental studies of the sensor are described. Experimental results show that high resolution and high sensitivity can be achieved. Two structures of micro-air-gap-based IFPI sensors offer more...

متن کامل

Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical th...

متن کامل

Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015